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ABSTRACT 

A direct numerical simulation, based on spectral methods, has been used to 

investigate viscous, incompressible, steady, rotationally symmetric flow due to a sphere 

rotating with a constant angular velocity about a diameter. The equations of motion have 

been reduced to a set of three nonlinear second order partial differential equations in terms 

of the vorticity, the stream function and the azimuthal velocity. The calculations have been 

carried out for Reynolds numbers (Re) from the Stokes flow regime (low Re) to the 

boundary layer regime (high Re). 

The numerical results clearly show how the Stokes flow behavior for low Reynolds 

numbers, and the boundary layer behavior for high Reynolds numbers, are approached in 

the appropriate limits. Besides showing the flow streamlines, results have been presented 

for the torque and the skin friction behavior. It is shown that the present results are in 

excellent agreement with both available experimental data, and previously obtained 

numerical data. The radial equatorial jet which develops with increasing Reynolds numbers 

has been observed as expected from boundary layer collision behavior. No separation was 

observed for the range of Reynolds numbers considered, even near the equator. 
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I. INTRODUCTION 

The study of direct numerical simulation of steady viscous flow due to a sphere 

which rotates about a diameter with constant angular velocity in a fluid at rest has 

historically been the focus of a great deal of scientific attention. Most of the previous 

studies were based on finite-difference schemes. 

In this study, a different numerical scheme based on spectral methods was used. 

The validity of the numerical method and the results were checked with the previous 

studies. Spectral methods have become increasingly popular in recent years, especially 

since the development of fast transform methods, with applications in numerical weather 

prediction, numerical simulation of laminar and turbulent flows and other problems where 

high accuracy is desired for complicated results. 

The objective of this study is to compute the numerical simulation of a steady flow 

about a spinning sphere by using the spectral numerical methods. A Matlab program was 

developed by using spectral methods. However the method itself was not compared to the 

other methods used in previous studies. The reliability and validity of the numerical 

method were investigated to improve our current ability to compute and predict the 

evolution of flow for a particular geometry and conditions. 





II. BACKGROUND STUDIES 

The spectral method is based on the collocation method which appears to have 

been used first by Slater and Kantorovic in specific applications in 1934. It was developed 

as a general method for solving ordinary differential equations. This method was revived 

by Wrigt in 1964. The applications of Chebyshev polynomial expansions to the initial 

value problems were involved in these studies. 

The spectral collocation method was applied to partial differential equations for 

spatially periodic problems by Kreiss and Öliger, who called it the Fourier method, and 

Orszag, who termed it "pseudospectral". These were the earliest applications of spectral 

collocation or the pseudospectral method. This approach was very attractive because of 

its application to variable-coefficient and even non-linear problems. 

The Galerkin approach which depends on the same trial and test functions, was 

applied to a meteorological model by Silberman in 1954. This was the first serious 

application of spectral methods to PDEs. In 1970, Machenhauer and Rasmussen 

developed transform methods for evaluating convolution sums arising from quadratic non- 

linearity. Spectral Galerkin methods became practical for high resolution calculations of 

such non-linear problems. Applications in fluid dynamics were reviewed in the symposium 

proceedings edited by Voigt, Gottlieb and Hussaini in 1984. 

For the problem of the flow induced by a spinning sphere being considered in this 

study, the flow behavior for small values of the Reynolds number, Stokes [Ref. 1], Lamb 

[Ref. 2], Bickley [Ref .3], Collins [Ref. 4], Thomas and Walters [Ref. 5], Ovseenko 

[Ref. 6], and Takagi [Ref. 7] have given theoretical results. For high Reynolds number, the 

boundary-layer equations have been studied by Howarth [Ref. 8], Nigam [Ref. 9], 

Stewartson [Ref. 10], Fox [Ref. 11], Banks [Refs. 12 & 13], Manohar [Ref. 14], and 

Singh [Ref. 15]. Over a large range of values of Reynolds number the flow has been 

investigated experimentally by Kobashi [Ref. 16], Bowden and Lord [Ref. 17], Kreith et 

al [Ref. 18], and Sawatzki [Ref. 19]. Another numerical method based on the use of 



specialized techniques to obtain an approximation of the finite-difference form of the full 

partial differential equations was performed by Allen and Southwell [Ref. 20], Dennis 

[Refs. 21 & 22], Roscoe [Refs. 23 & 24], Spalding [Ref. 25] and Dennis, Ingham and 

Singh [Ref. 26]. 



III. GOVERNING EQUATIONS 

A.       DERIVATION OF EQUATIONS 

The governing equations for the problem are as follow; 

9u 1„       n, 
—+ (u.V)u = — Vp + vV2u 
dt p 

Define dimensionless variables; 

r 

a 
u 

V.u = 0 

u .     Vp 
Ü VP  =W 

where    a : radius of the sphere, 

U : free stream velocity, 

p : density of the fluid, 

v  : kinematic viscosity of the fluid. 

Introduce the dimensionless variables into Equation (3.1); 

(3.1) Momentum equation 

(3.2) Continuity equation 

V*=-V 
a 

Uv du     U2     , „   . 
——+ (u .V)u  =■ 
a"    dt       a P   a 

■Vp'+v-^-W 

Divide Equation (3.3) by 
U.v 

du*    U.a    . „    . 
— + (u*.V)u*=- 

dt        V 

U.a 

v 
Vp*+vW 

(3.3) 

(3.4) 

Hereafter the superscript * will be omitted for nondimensional terms.   Define the 

U(2a) 
Reynolds number based on the diameter, Red =  , and take the Curl of Equation 

v 

(3.4) to be able to eliminate the pressure term and introduce vorticity, co = V x u  where 
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CÖ=lrGLV+leCÜ6+l*Ü)k!>. 

The transport equation for the O-component of the vorticity is 

lo^-VxCuxco^ie^ 
v2-- 

r sin2 0 CO<t>lc> (3.5) 

Convert the velocity in Equation (3.5) by defining the axisymmetric Stream function, V|/, 

and an "angular circulation", Q. 

u = Vx V 
rsin6 

Q. 
+ i 

* rsin0 
§; Azimuthal direction    (3.6) 

In spherical coordinates, Equation (3.6) is obtained as 

u 
3\|/ 

sinG 36 
l. - 

i   <y 
rsin0 3r rsin0 

(3.7) 

where 

U = Urlr+Uele+U0lo (3.8) 

In the free stream w = — Ur2 sin2 0 or 11/ = — r2 sin2 0 in nondimensional form. T    2 2 

By using the definition of the stream function it can be shown that 

C0tj> = 

32\|/    J 1 3 f   1    3\|/^ 
1 +   2 sin 6 961 sin 6 30 ft       r 

-1   ^ 

vrsin0, 
(3.9) 



Define operator D2 as 

d2   sine a ( \   a 
D =a7+- ae VsinG 30 j 

(3.10) 

to obtain the azimuthal component of the vorticity; 

1 
Cütt> = - 

rsinÖ 
D2\|/ (3.11) 

Call [ V x (u x caDid>)].i(t>   in Equation (3.5) nonlinear Term G(r,6,t). By carrying out the 

calculations in spherical coordinates 

Vx(uxv)(S>i<i>)= — 
1 

r sine 
9(i|/,D2\|/) 

3(r,u.) 
+ 2Dzvj/L(\|/) (3.12) 

is obtained, where 

H = cosG 

1 — j-L2 3r    r 9(i 

9(z,,z2)    3z, 3z2    9z, 8z2 

3(x,y)       3x   dy     3y   3x 

(3.13) 

Combine all terms to get 

3  _, Red   1 

äT(Dv)+Y- 
d(\y,D2\\f) 

3(r,Ji) 
+ 2D2V(/L(\|/) = D> (3.14) 



Equation (3.14) is called the Vorticity-Stream function form of the Momentum 

Equation in axisymmetric spherical coordinate system. For computational purposes, 

which will become clear later, define a modified stream function C(r,0,t), which is related 

to the usual Stokes stream function (\|/) by the relation; 

\|/ = rCsin9 (3.15) 

Also for any function f (r,0), define operator D2 such that 

D2(frsin0) = rsin0D2f 

where 

This gives 

D2 =V2-  2     •    2 n r  sin  0 

co4=-D2C (3.16) 

u = Vx(CL)+-—U (3.17) 

1      ö 
ur=—T^(Csin0) 

r sin 0 d0 
1 3 

where ua=—T-(IC) (3.18) 
r or 

*     rsin0 

The modified stream function C is written as the sum C = C + c, where C = 0, 

(which is the prescribed quiescent free stream condition), and c represents the disturbance 

produced by the presence of the spinning sphere. 



Returning to Equation (3.5), rearrange by multiplying both sides with r 

Red 3d)      , Re .2  xwd = r—-G(r,0,t) + r2D2co 
2    3t     "      2 

r2D2C = -r2co 

Red 

2   ' 

(3.19) 

(3.20) 

where 

G(r,0,t)=[Vx(ux(Doio)]-io (3.21) 

Note that the operator D2 is defined as 

D2 = 
r2 3rlr 3r 

+ 
r2sin2eae 

3 f     d} 
sin930 

l 

r  sin  0 
(3.22) 

Divide r D   in two parts which are D^ and Dg respectively and obtain 

1 
rDz=D   + r ' sin20D° 

(3.23) 

where D2 and D2, are as defined in Chapter IV. 

The nonlinear term in Equation (3.21), G(r,8,t), consists of 8 terms. These are 

1 BcOa, 3C 

r   3r   30 

co0 3C 

1 dtt>0 3C 
r   30   3r 

C 3cod 

Cot0       3C 

— "•IT 

•2  90 90 
2u, 

Cot© 3u0 

r      3r 

Cot0 
 C 

r 3r 

2u0 3u* 
30 

Time integration of vorticity equation (3.19) is accomplished through the use of an 

explicit second-order Adams-Bashforth scheme for the nonlinear terms and an implicit 



second-order Crank-Nicolson scheme for the viscous and linear terms. The calculations 

are made in physical r-space and spectral 0-space. If we denote vorticity 0)(r,t) as the 

vector of N sine series then the discretized form of Equation (3.19) is 

2Red 

At 

, Rec ■[ctGf+ßGl_J + [Dj+Aj-1 CO, +C0, 

2       L--1    ■   r-.-aJ   ■   L-r     -   "J^ 2 

where a and ß are suitably chosen weighting parameters in the implicit scheme. 

Rearrange Equation (3.24) and obtain 

(3.24) 

■> ■> Red D2+A-r2 —— r At <*>,+*=- 

, - Reri 
D2+A + r2—- 

At 
CO ,-r2Red[oGt+ßGt_J     (3.25) 

where a=- , j3 = --   and   G = (V x (u x av«,))-^ 

[D
2
 +A]c(r,t + At) = -r2co(r,t +At) (3.26) 

We find the governing equation for u<p in same way: 

dQ.       1 3(^,fl) 
a(r,Cos9) 

2   D2Q 
Re, 

where     r = ufh and   C = - 
rSin6      * rSinS 

(3.27) 

and introduce   D Q = D (u0rSin6) = rSin6D2u(]J and divide each side by (r sin0) 

If Equation (3.27) is rearranged, the result is 

3u. 
at 

d(ue.c) 
3(r,e) 

+ C2i 

^,Ln(rSin0) 
C 

a(r.e) 
+ 

Re, 
(3.28) 

10 



The nonlinear term in Equation (3.28) is called H(r,9,t) and consists of 

i au«, ac i 3u„, ac cote    ac 
r   ar   ae r ae   ar r    U*ar 

cote  au,. 
—c—— 

r         3r r2 ae 
C   du0 

r2  ae 

u* is written as the sum of two parts: potential and disturbance parts, 

Sine 
U(D = U<i> +U<j,        where        u* =—-r~  is the Stokes flow 

r 

solution which satisfies  D Uo = 0. The final form of Equation (3.28) is 

^ = H(r,M+-LD.(„.) (3.29) 

u.(. + *)-.(,)     l[3H(t)_H(t_At)] + ^l 
At z K.e J 

u0(t) + u0(t + At)' 
(3.30) 

u0(t + At) 
r2 Red    r

2D2 

2At 2 
= uo(0 

r2Red    r
2D2 

2At 2 

r2 Re 
+ -[3H(t)-H(t-At)] (3.31) 

At 
u„(t + At) = - Dr2+A+- 

r2 Re., 
At 

Uo(t)-^-[3H(t)-H(t-At)](3.32) 

11 



B.        BOUNDARY CONDITIONS 

The boundary conditions for the numerical scheme are 

3c       dC 
c = -C = 0        — = --— = 0 uo=0     atr=l (3.33) 

c = 0      co=0    ut = 0  atr=r. (3.34) 

The Neumann Boundary Conditions in Equation (3.33) are handled with Lhe 

Green's Function Method that will be explained later. Zero boundary conditions in the 0 

direction are automatically satisfied with the choice of the sine expansions. 

12 



IV.   METHOD OF SOLUTION 

A.       NUMERICAL METHOD 

A pseudospectral or collocation method based on the technique developed by 

Marcus & Tuckerman [Ref. 29], is used to solve the equations of motion in time. Spectral 

methods may be viewed as an extreme development of weighted residual (MWR) which is 

generally used in a discretization scheme for differential methods. The trial functions and 

test functions are chosen as infinitely differentiable global functions. This is one of the 

features which distinguish spectral methods from finite-element and finite-difference 

methods. A pseudospectral transform method is used in this study. The approach taken in 

the transform method is to use the Fast Fourier Transform (FFT) to transform the 

functions to spectral space or Inverse Fast Fourier Transform (IFFT) to transform the 

equations to physical space. 

A physical process can be described either in time domain, by the values of the 

same h as a function of t, e.g., h(t), or else in frequency domain, where the process is 

specified by giving its amplitude, H, as a function of frequency f, that is H(f), with -<» < f < 

oo. So once it is known whether the function is either odd or even, this information can be 

used in transformations. If h(t) is real and even then H(f) is real and even, if h(t) is real 

and odd then H(f) is imaginary and odd. It is necessary to go back and forth between 

these two domains by means of Fourier transform equations. As explained below, odd 

functions, using sine series expansions for co, c and u*, are used. The same properties are 

valid for derivatives of these expansions. Using these properties will increase 

computational efficiency. 

Functions are presented both in spectral space as a finite series of basis functions 

and by values at collocation grid points in physical space. The vorticity, co, the modified 

stream function, C, and the velocity in the <E> direction, u<j>, are expanded as Chebyshev 

polynomials in the radial direction and as sine series in the transverse direction. The 

products  and  the   derivatives in radial direction are done in physical space while the 

13 



derivatives in transverse direction are obtained in spectral space.  Since each sine term in 

the expansion satisfies the homogenous 0 boundary conditions (co = 0, *F = 0, u$ =0 at 

0=O,TE) exactly, no further 9 boundary conditions need to be applied. 

In general let a variable, say co, be expressed as 

N 

co(r,e,t) = 5>n(z,t)Sin(en) (4.ia) 
n=l 

with 

nOM) = I>mn(t)Tm(z) (4.1b) 
m=0 

where Tm(z) is Chebyshev Polynomial with -1 < z < 1 

6=-^- n=l,2,...N (4.2) n     N + l 

z = Cos 
fmn^ 

m = 0,l,...M (4.3) 

An algebraic map is used to map the radial interval 1 < r < rTC to the interval 

-1 < z < 1 where 

r = l + L-^,   lzl<l (4.4) 
b-z 

2L 
with       b = 1 +      (Note that r0 = 1, which is the surface of the sphere.) 

L is a scaling parameter which is used to map the radial interval to the z-interval. 

A finite, but large outer rTO, was chosen to avoid regularity problems in the radial 

differentiation. 

The sine expansions (4.1a) for co, C and u<j> satisfy the homogenous 0 boundary 

conditions and match exactly the periodicity and symmetry conditions in 0. The solution 

of the elliptic equation (3.20) is required to obtain the modified stream function, C, from 

vorticity co at any time level. Following [Ref. 29], separable derivative operators, Dr
2 and 

De2, are defined as 

14 



r2D2=D?+^-D» 
sin  0 

(4.5) 

where 

f     ^\ 
D   =-^ r     3r 

D2 = 

V     3ry 

sin 8 — 
96 V 

sinG 
36 

-1 
(4.6) 

In spectral 6-space the effect of operator D8
2 at any fixed radial location (physical r-space) 

can be written as 

Djj.fxe) 

N 

'   ,   a2 3 
sin" 0—^T + sin0.cos6T—--1 

362 36 
IfjSin(je) 

-(l + |j2)sin(je)+-j(l + j)sin(2e + j6)+-j(l-j)sin(2e-je) (4.7) 

If this expression is written in the form of Dgf(6) = IS^ If j 

se = 

(i-2)(i-l) 

2 
(i +2)(i + l) 

4 
0 

i = j + 2 

i = j 

i = j"2 

otherwise 

(4.8) 

is obtained. 

This matrix is NxN if the representation for D]f is truncated to N Fourier terms. 

Similarly, the operation of multiplying a function f(8) by sin~2(0) produces another 

NxN matrix which is called A matrix where the only non-zero terms are 

_jal(i) = -i(i + l) 
Aij~1a2(i)=-2i 

i = J 

i < j, i + j = even 
(4.9) 

15 



Time integration of the equations are obtained by using the scheme which is 

explained in Chapter III. 

The nonlinear terms, G and H, have to be carefully handled by transforming the 

spectral coefficients to physical space first, then multiplying the terms in physical space, 

and finally transforming the result of these products back to spectral space. 

The radial derivatives are evaluated by collocation methods and expressed as 

matrix operations on the vector of function values at the grid points in physical r-space. 

For (M+l) collocation points, we introduce the (M+l)x(M+l) matrix operation, that is 

Du,(n) = D,+ 
Re   , 

a(l)--r> (4.10) 

,2     1, where, I is the identity matrix.  The operator [Dr -r(Re/At)+A] in (3.25) and (3.32) may 

now be written in block matrix form as 

D(,)(l)        0 a2(l)I 0 

0 D(1)(2)        0 a2(2)I 

0             0 D(1)(3) 0 

0             0             0 D(1)(4) 
(4.11) 

This matrix acts on the vector of a length of (M+l)xN for vorticity coefficients. 

Equations (3.25) and (3.26) are upper triangular, block matrix problems in physical r- 

space and spectral 9-space that can be solved by any solver with the Dirichlet and the 

Neumann boundary conditions discussed below. The equation (3.32) is treated in the 

same manner and leads to an upper triangular, block matrix problem. 

B.       GREEN'S FUNCTION METHOD 

To enforce the radial boundary conditions in c-co equations, (3.25) and (3.26), 

Green's  Function  Method  has  been  developed  which  gives  the  correct  boundary 

16 



conditions, (3.33) and (3.34), and allows the surface vorticity to develop naturally.  If GO 

and c consist of two parts, homogenous and particular solutions, the following is written: 

CO = COp+X^j®j and c = cP
+2^j£j j=l,2,...,N (4.12) 

If (4.12) is introduced into (3.25) and (3.26), the homogenous parts as follow with 

corresponding boundary conditions occur. 

E2c5j(r,0) = O (4.13) H^^-r^j (4.14) 

öJ(r = l,ei)=8ü Cj(r = l,ei) = 0 

»j(r = oo,ei) = 0 cj(r = oo,ei) = 0 

The particular parts with corresponding boundary conditions are 

E2cop(r,e,t + At) = R(r,6,t)  (4.15)       H2cp(r,6,t + At) = -r2cop(r,e,t) (4.16) 

cop(r = l,9)=0 cp(r = l,e) = -Clr=1 

cop(r = oo,0) = O cp(r = oo,6) = 0 

E2 and H2 are obtained from the block matrix defined in (4.11) 

To find A, 

3c      __9C 
arlr=,""arlr=1 

is enforced. 

17 
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If (4.12) is substituted into (4.17), 

(4.18) 

is obtained. 

Allow 
ac   9c t 
dr      dr 

-lr=],e, 

= H,        and       -^ lr=1>e. - ASj (4.19) 

Finally from (4.18) and (4.19), Hi = ^A^ occurs and we solve for A,/ as A, = A"'H. 
j=i 

These X values can now be used in Equation (4.12) to arrive at the values of co and c. 

18 



V.   RESULTS AND DISCUSSION 

Numerical calculations were performed for following parameters. 

Re M N L r» dt 

2 64 64 7 150 0.05 

4 64 64 6 140 0.05 

10 64 64 4 130 0.03 

20 64 64 4 125 0.05 

40 64 64 4 125 0.05 

60 64 64 4 100 0.03 

80 64 64 3 70 0.03 

100 64 64 2 40 0.01 

150 64 64 2 30 0.03 

175 64 64 2 25 0.03 

200 64 64 2 20 0.05 

1000 64 64 1 17 0.01 

2000 64 64 0.6 14 0.01 

3000 120 128 1.5 15 0.01 

5000 128 128 1 8 0.01 

Table 1. Parameters Used in Numerical Calculations 

One of the main problems associated with many investigations that deal with 

complete numerical solution of Navier Stokes equations is the behavior of numerical 

scheme at high Reynolds numbers. It was found here that numerical results could be 

obtained for higher values of Reynolds numbers. For computational purposes, the results 

for Reynolds numbers up to 5000 are presented. 
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For comparison, T (Torque) is defined as 

T= j*G>*SinedS* (5.1) 
S,r=l 

If (5.1) is nondimensionalized, the following occurs: 

1 r r) 

o    2    „ = 1 eJ^Sin29d8      , where     Gr(t)=r — 
2)ia pvV     J0 or 

'u   ^ 

V r ; 

3u0    u,» 
3r  ~  r 

1 r=l 
(5.2) 

The small mapping parameter, L, with increasing Reynolds number provides a finer 

grid in the boundary layer. The re-circulation of the flow near the equator is another 

important result of a spinning sphere which will be explained later. Since most of the sign 

changes in velocity profiles occur in this region, decreasing L much below one is not a 

solution to gain some additional grid points in the boundary layer for high values of 

Reynolds number because finer grid near the sphere means coarser grid in the outer 

region. 

Several solutions for large Reynolds numbers have been obtained by integrating 

numerically the boundary layer equations found in [Ref. 13] which gives 

6.48 a2co 
M = J77,        where Re   =  (5.3) 

Rea v 

There are some other investigations that recommend a different numerical factor 

such as 5.95 [Ref. 8], 6.54 [Ref. 12] and 6.53 [Ref. 14]. In [Ref. 26], Equation (5.3) was 

modified as 

6.48       31 

The Constants 6.48 and 31 in Equation (5.4) are for Reynolds numbers based on radius; 

these constants should be modified to 9.16 and 62 respectively for Reynolds numbers 

based on diameter as in this study. 
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Red Takagi 

[Ref. 7] 

Dennis, 

and Singh 

[Ref. 20] 

Banks 

[Ref. 13] 

Equation 

(5.4) 

Dennis, and 

Singh 

[Ref. 26] 

Present 

2 50.307 50.309 6.48 37.480 50.305 50.31 

4 25.216 25.218 4.58 20.082 25.216 25.23 

20 5.401 5.399 2.05 5.149 5.398 5.40 

40 3.048 1.45 2.999 3.048 3.02 

100 1.554 0.916 1.496 1.554 1.54 

200 0.966 0.648 0.958 0.966 0.96 

1000 0.290 0.352 0.348 0.35 

2000 0.205 0.236 0.234 0.23 

3000 0.167 0.188 0.19 

5000 0.129 0.142 0.14 

Table 2. Nondimensional Torque (M) at Different Reynolds Numbers 

Figure 1 shows the variation of nondimensional torque with Reynolds numbers. It 

is seen that as the Reynolds number increases the general trend is quite consistent with the 

boundary layer solution given in [Ref. 13]. 

Figure 1. —, Banks [Ref. 13]; o, Sawatzki [Ref. 19]; +, Present 
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Figure 2 and Figure 3 show the transverse and azimuthal components of the 

dimensionless skin friction on the sphere, respectively. As it is in Figure 1, the higher 

Reynolds number, the closer it is to the boundary layer solution. Transverse and azimuthal 

components of dimensionless skin friction are defined as 

Te = 

fi Y'YaO 
vRedy 3r A=i 

(5.5) 

< 2 V'Vau ^ 
** = 

vRedy v 3r yr=, 
(5.6) 

Figure 2. Transverse Component of Skin Friction ; —, Banks [Ref. 13] 
o, Red=20; +, Red=200; *, Red=3000 
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Figure 3. Azimuthal Component of Skin Friction; —, Banks [Ref. 13] 
o, Red=20; +, Red=200; *, Red=3000 

Present results agree well with the boundary layer solution near the pole but this is 

not so for the equator region. This is because the boundary layer solution is obtained by 

integrating parabolic partial differential equations from 0=0 with known initial conditions 

and the solution near the equator is determined from this procedure. Thus, it does not 

satisfy the physical boundary conditions. 

Since a finite r«, is used and the modified stream function is forced to be zero at n» 

and on the sphere, a spurious re-circulating region of extremely weak flow (relative 

magnitude ~ 10"7) is introduced to account for the continuity in the flow domain. The 

inflow at the pole changes to an outflow at the equator. The angular position of this 

change depends on Re but does not vary greatly in terms of radial distance from the 

sphere. However, the general trend is to get closer to the sphere with increasing Reynolds 

numbers. Figure 4 shows the stream lines in symmetric plane for different values of 

Reynolds numbers. 
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Re=200 

-O.S 0 

Re=3000 

Figure 4. Stream Lines for Various Re 

In Figure 5, the jet effect can be easily seen at the equator for two different 

Reynolds numbers. The darker color represents the regions where the magnitude of 

dimensionless velocity in the symmetric plane is higher. The reference velocity in Figure 5 

is the velocity in the azimuthal direction on the sphere which has a value of unity. 

0.2 

0.1 
5 

0.1 

Re=200 Re=300 

0.35 
0.3 
0.25 
0.2 
0.15 

Ü 0.1 
0.05 
0 

Figure 5. Jet Effect at Equator 
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Figure 6a and Figure 6b show the experimental flow visualization obtained by 

F. P. Bowden and R. G. Lord [Ref. 17], and present numerical solution for Red=3300 

respectively. Note that, unlike Figure5, the velocity fields in Figure 6a and Figure 6b are in 

3-D. As it is seen there is a reasonable resemblance between experimental and numerically 

obtained pictures. In the experiment, the sphere was levitated by means of a magnetic 

field. It was noted in [Ref. 17] that, because of this magnetic field, there is a slight upward 

convection current so the smoke rises slowly; this explains why the top half of the picture 

is white and the bottom half black. Note also that, the length of the radial jet is relatively 

shorter in Figure 6a. This behavior can be explained by the presence of possible shear 

turbulence in the radial jet for high Reynolds numbers causing the laminar jet behavior to 

disintegrate. Since the present results are obtained by means of a numerical solution 

without any kind of turbulence modeling, there is no effect of turbulence in our cases, 

even for higher Reynolds numbers. 

Figure 6a. Smoke Picture of the Boundary Layer Flow for Re=3300. (From Ref. 17) 

Figure 6b. Numerical Picture of the Boundary Layer Flow for Re=33O0. 
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In the boundary layer approximation, it is assumed that the velocity profile in the 

boundary layer just before the equator is the same as the one at the start of boundary 

collision. This assumption yields zero radial velocity at 6 = 7t/2, near the sphere. From 

the results it is seen that radial velocity is not zero at the equator near the sphere. Figure 7 

shows the variation of radial velocity with 6 for Re = 200 at different radial distances from 

the sphere. Note that the maximum value of radial velocity occurs exactly at the equator. 

Besides, there is an inward flow at both poles. Although the maximum value of radial 

velocity at the equator increases with Reynolds numbers, the thickness of the region where 

a general outward flow from the equator can be discussed decreases. 

0.12 

0.08 

0.06- 

. 0.04 - 

0.02- 

-0.02 

-0.04 

Figure 7. Variation of Radial Velocity with 0 for Re = 200 
-.-., r= 1.0543; —, r= 1.1129; , r= 1.1651 

Figure 8 shows the variation of radial velocity with radial distance at the equator 

for different values of Reynolds numbers. Details of this swirling jet at the equator were 

given in [Ref. 27] and [Ref. 28]. 
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Figure 8. Variation of Radial Velocity with Radial Distance at 0=7c/2 o, Re=20 
+, Re=200; *, Re=3000 

Figure 9 shows the variation of dimensionless vorticity at the surface with 0 at 

different Reynolds numbers. The interest of this figure is to show that no separation 

occurs over the surface of the sphere, since a sign change must take place as a point of 

separation is passed. 
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Figure 9. Variation of Dimensionless Vorticity with 0 
o, Re=20; +, Re=200; *, Re=3000 
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It is known that the boundary layer solution to be approached as Reynolds 

numbers increases, especially near the poles, and it is accurate to 0(Re"1/2). Therefore, we 

might expect that Re~1/2 — at r = 1 and 9 = 0 will be of the form ae 
1    pco^ 

Re'/2Ue r=l 
9=0 

A + BRe. -1/2 (5.7) 

where A and B are constants. 

If Re~1/2 — at r = 1 and 6 = nil is evaluted, it can be seen that this function is an 

increasing function of Re. It can be assumed that this expression is in the form of 

Re 1/2 
= CRea

a 

r=l a 

9=it/2 

(5.8) 

where C and a are constants. 

The values of A, B, C and a were found by Dennis, Ingham and Singh [Ref. 26] to 

be 0.51, 0.56, 0.6 and V* respectively. The modified values of B and C for Reynolds 

numbers based on diameter are 0.79 and 0.5 respectively. 

Re„ -in dco 

Co e=o 

0.79 

°'5,+ Rea'" 
-i/-> dco 

Rea  ~("^fi")r=l 
Co e=it/2 

0.5Red
,/4 

10 0.695 0.760 0.43 0.89 

20 0.639 0.687 0.806 1.06 

50 0.597 0.622 1.15 1.3.3 

100 0.576 0.589 1.50 1.58 

200 0.552 0.566 1.79 1.88 

1000 0.528 0.535 2.81 

2000 0.523 0.528 3.34 

Table 3. Calculated Values of Re"1'2 — at r =1, 6 = 0 and r = 1, 9 = nil 
do 
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VI. CONCLUSION AND RECOMMENDATIONS 

In addition for the limiting cases of Re«l and Re»l for which Stokes flow and 

boundary layer solutions are available, the numerical results showed very good agreement 

with the those previously obtained by other numerical techniques. By changing some of 

the parameters such as r~ and L, the agreement with previous numerical results could be 

refined, although there is no proof that the other studies are correct within three decimal 

digits. 

Choosing the mapping parameter, L, should be done carefully so as to have many 

grid points in the regions of large gradients. A much more powerful mapping should be 

determined that provides a finer grid in two completely different regions, namely the 

boundary layer region and the re-circulation region (which though spurious, must be 

captured accurately by the numerical method for other calculations). 

A different FFT technique can be used that allows a number of grid points in the 6 

direction other than the ones that are a power of two. This would provide a relaxation in 

the choice of the number of grid points for different values of the Reynolds number which 

greatly affect the memory requirement. The problem is solved for 6 = 0 to 9 = % with the 

aid of sine expansions. Since the problem is also symmetric with respect to 7t/2, by taking 

care of the even function properties it can only be solved for one quarter which simply 

doubles the grid points in 6 direction with the same memory requirement. 

The Green's Function Method that deals with the Neumann boundary conditions 

should not be considered a trivial detail and must be used to have a stable convergence 

process. 

Obtained modified stream function values, C, can be easily used to solve the heat 

transfer problem due to convection from a spinning sphere. Derived additional energy 

equations are as follow 
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T(t + At) rlDL-Ec- 
At 

■T{t) rlDl+Ec 
At 

+ Ec-[3K(t)-K(t-At)]      (6.1) 

where Ec = Pr Re. 

The nonlinear term, K, in Equation (6.1) consists of 5 parts 

dT_dC 

dd dr' 36 

dTdC 

dr dd 

dr 
CrCot{6) — 

dr 
2Ec 

Sin2 (9) 

Since, for forced convection only, Equation (6.1) is uncoupled from Navier Stokes 

equations, the steady state values of modified stream function, C, can be used in the 

energy equation after solving the fluid problem which decreases the additional memory 

requirement due to different block matrixes in Equation (6.1). 
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APPENDIX A. PROGRAM STRUCTURE 

In the first part of the program, problem parameters were defined such as Re, dt, 

L, r_inf, M, N. Also calculations that are not dependent on time were performed in this 

part. To gain some additional memory Dl, D2 and D3 were calculated with DJBmat 

function and saved as diagonal elements only. Non-diagonal elements of these matrixes 

were included in each iteration. 

Calculations showed that the matrix Ml (derivative operator in r direction) and 

consequently M3 and block matrixes that are diagonals of Dl, D2 and D3 are ill- 

conditioned. To avoid numerical errors in solving equation systems, the Singular Value 

Decomposition method was used. Necessary SVD decomposition of the matrixes and 

calculations of CO and c that are used in the Green's Function Method were performed in 

this part. The built-in function in MATLAB, svd, was used for decomposition. 

Time dependent calculations basically consist of four steps. In the first step, u* 

was calculated from Equation (3.32). In the second step, particular solutions of co and c 

were found from Equations (3.25) and (3.26). In the third step, H, which is used in the 

Green's Function Method, was found and finally homogenous and the particular solutions 

were combined to get co and c. 

Most of the calculations were performed in spectral domain which is a feature of 

the numerical technique. Only nonlinear operations were done in physical domain. 

Nonlinear terms were calculated with the functions nonlin and nonlinsp for co-c and u 

equations respectively. 

A convergence criterion was not used in the program. For high Reynolds Number 

(above 200), some over-shooting occurs before steady state. This situation might have 

caused wrong results if a criterion was used. Instead, the results were checked during 

calculations and the program was terminated after seeing steady state. 
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Solsvd : This function was used to solve equations after SVD decomposition. The 

limit used in this function reduces numerical errors due to ill-condition matrixes by 

skipping close to singular values in each iteration. 

Solsvd 1 : Since this function was used for solving homogenous parts in the 

Green's Function Method and performed once before the time-loop, no limit was used in 

solsvdl. 

Phy : This function was used for transformation of the variables from spectral 

domain to physical domain 

Operat: Derivatives in 9 direction in the spectral domain were performed with the 

function operat. Since these terms were used only in nonlinear terms, the output from this 

function is in the physical domain. 

Variables that were used in the program are 

L        : Mapping parameter. 

Re      : Reynolds Number. 

dt      : Time interval between iterations. 

r_inf   : Outer boundary. 

step    : Number of iterations. 

N       : Number of grid points in 6 direction. 

M       : Number of grid points in r direction. 

xcor, ycor : Cartesian coordinates of grid points with respect to the center of the 

sphere (used for the presentation of the results). 

Ml     : Derivative operator in r direction. 

Dl, D2, D3 : Matrixes defined as in Equation (4.11). 

w        : Vorticity. 

c : Potential function as in Equation (3.15). 

u : Velocity component in O direction. 

wtil, ctil : Homogenous part of the 00 and c defined as in the Green's Function 

Method. 

Aij, H, landa : Variables defined as in the Green's Function Method. 
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wp, cp : Particular solution of CO and c defined as in the Green's Function Method, 

torq     : Dimensionless torque defined as in Equation (5.2). 
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APPENDIX B. PROGRAM CODES 

%% define program parameters 

clear all 
global E Ml M2M3 
L=7;Re=2;dt=0.05; 
r_inf=150;step=4500; 

%% define grid points 

N=32;n=[0:N-l]'; 
teta=n.*pi./N; 
M=32;m=[0:M]'; 
z=cos(pi.*m./M); 
b=l+2*L/(r_inf-l); 
r=l+L.*(l+z)./(b-z); 
global N M 
xcor=cos(teta)*r'; 
ycor=sin(teta)*r'; 

E=emat(M); 
disp('E matrix is done') 

%% define Ml,M2,M3 

dz_dr=(b.*(L+r-1 )-b.*(r-1 )+L)./(L+r-1 ).A2; 
B=diag(dz_dr); 
M1=B*E; 
R=diag(r);global R Re dt 
M2=R*M1; 
M3=R*(2.*eye(M+l)+M2)*Ml; 

%% define D1D2D3 

[Dl,D2,D3]=D_Bmat(M,N); 

% define initial w c wp cp u 

wp=zeros(M+1 ,N);cp=wp; w=wp;c=cp; 
duml=sin(teta)*(l./r.A2)';dum2=[duml;zeros(l,M+l);-l.*flipud(duml(2:N,:))]; 
dum3=fft(dum2); 
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u=wp; 

% define kmat (for teta der.) and cotteta (for nonlinear terms) 

dum=ones(l,M+l); 
kmat=n*dum; 
cotteta=[0;cot(teta(2:N))]*dum; 
global kmat cotteta teta 

% svd decomposition for Dl D3 and define rsquare (for nonlinear terms) 

Dlu=zeros(N*(M+l),M+l); 
Dll=Dlu;Dlp=Dlu;D31=Dlu;D3u=Dlu;D3p=Dlu; 
rsquare=zeros(M+1 ,N); 
fori=l:N 

bas=(i-l)*(M+l)+l; 
son=bas+M; 
rsquare(:,i)=r.A2; 
Dl(bas,:)=[l zeros(l,M)]; % modify Dl for w @ r=inf 
Dl(son,:)=[zeros(l,M) 1]; % modify Dl for w @ r=l 
[Dll(bas:son,:),Dlu(bas:son,:),Dlp(bas:son,:)]=svd(Dl(bas:son,:)); 
D3(bas,:)=[l zeros(l,M)]; % modify D3 for c @ r=inf 
D3(son,:)=[zeros(l,M) 1]; % modify D3 for c @ r=l 
[D31(bas:son,:),D3u(bas:son,:),D3p(bas:son,:)]=svd(D3(bas:son,:)); 

end 
global rsquare 

% define c_ c_teta c_r u_ u_teta u_r 

c_=zeros(N,M+1 );c_teta=c_;c_r=c_; 
u_=l.*sin(teta)*(l./r.A2)'; 
u_teta= 1 .*cos(teta)*( 1 ./r.A2)'; 
u_r=-2.*sin(teta)*(l ./r.A3)'; 
global c_ c_teta c_r u_ u_teta u_r 

% define c boundary at r=l 

cbrl=zeros(l,N); 

% begin green function wtil ctil 

wtil=zeros(M+l ,NA2);ctil=wtil; 
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forjj=l:N 
RR=zeros(M+l,N); 
duml=[zeros(l,jj-l) 1 zeros(l,N-jj)]; 
dum2=[duml 0-l.*fliplr(duml(2:N))]; 
dum3=fft(dum2); 
dum4=imag(dum3( 1 :N)); 
RR(M+l,:)=dum4; 
wtil(:,jj*N)=solsvdl(Dll((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),. 

Dlu((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
Dlp((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
RR(:,N)); 

fori=N-l:-l:l 
sum=zeros(M+1,1); 
ii=(jj-l)*N+i; 
forj=i+l:N 

if rem(i+j,2)==2 
sum=sum+(-2*(i-1 )).* wtil(:,(jj-1 )*N+j); 

end 
sum(l)=0; 
sum(M+l)=0; 
end 
RR_=RR(:,i)-sum; 

wtil(:,ii)=solsvdl(Dll((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
Dlu((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
Dlp((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
RR_); 

end 

tempwtil=(-1 .*rsquare).*wtil(:,(jj-1 )*N+1 :jj*N); 
tempwtil(M+l ,:)=zeros( 1 ,N); 
tempwtil( 1,: )=zeros( 1 ,N); 
ctil(:,jj*N)=solsvdl(D31((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),.. 

D3u((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
D3p((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
tempwtil(:,N)); 

fori=N-l:-l:l 
ii=(jj-l)*N+i; 
sum=zeros(M+1,1); 
forj=i+l:N 

ifrem(i+j,2)==2 
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sum=sum+(-2*(i-1 )).*ctil(:,(jj-1 )*N+j); 
end 

sum( 1 )=0; 
sum(M+l)=0; 
end 
wtil_=tempwtil(:,i)-sum; 

ctil(:,ii)=solsvdl(D31((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),.. 
D3u((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
D3p((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
wtilj; 

end 
end 

% find Aij matrix 

forjj=l:N 
blok=ctil(:,(jj-l)*N+l:jj*N); 
duml=phy(blok')'; 
dum2=(Ml*duml)'; 
dum3=[dum2; zeros(l,M+l); -l.*flipud(dum2(2:N,:))]; 
dum4=fft(dum3);dum5=imag(dum4( 1 :N,:));dum5=dum5'; 
ctilr_l (jj, 1 :N)=dum5(M+l,:); 

end 

Aij=ctilr_l'; 

% find svd of Aij for landa solving 

Aij(l,:)=[lzeros(l,N-l)]; 
[Aiju,Aijs,Aijv]=svd(Aij); 

% begin time loop 

for ops=l: step 

if ops==l ;prc=c;prw=w;pru=u;end 

% findRl 

Rl=zeros(M+l,N); 
Rl(:,N)=D2((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:)*w(:,N); 
fori=N-l:-l:l 

summ=zeros(M+1,1); 
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forj=i+l:N 
if rem(i+j,2)==2 

summ=summ+(-2*(i-1 )).*w(:,j); 
end 

end 
Rl(:,i)=D2((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:)*w(:,i)+summ; 

end 
R1=-1.*R1; 

R1 sp=zeros(M+1 ,N); 
Rlsp(:,N)=D2((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:)*u(:,N); 
fori=N-l:-l:l 

summ=zeros(M+1,1); 
forj=i+l:N 

ifrem(i+j,2)==2 
summ=summ+(-2*(i-1 )).*u(:j); 

end 
end 
Rlsp(:,i)=D2((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:)*u(:,i)+summ; 

end 
Rlsp=-l.*Rlsp; 

%   findR2sp 

R2asp=nonlinsp(u,c); 
R2bsp=nonlinsp(pru,prc); 
R2sp=3/2.*R2asp-l/2.*R2bsp; 
R2sp=(-1 *Re).*rsquare.*R2sp; 

Rtotsp=Rlsp+R2sp; 

% find new u 

%% apply BC for u 

Rtotsp( 1 ,:)=zeros( 1 ,N);   % BC for u=0 at r_inf 
Rtotsp(M+l,:)=zeros( 1 ,N);   % BC for u at r=l 

u(:,N)=solsvd(Dll((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
Dlu((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
Dlp((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
Rtotsp(:,N)); 

fori=N-l:-l:l 
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sum=zeros(M+1,1); 
forj=i+l:N 

if rem(i+j,2)==2 
sum=sum+(-2*(i-1 )).*u(: ,j); 

end 
sum(l)=0; 
sum(M+l)=0; 
end 
Rtotsp_=Rtotsp(:,i)-sum; 

u(:,i)=solsvd(Dll((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
Dlu((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
Dlp((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
RtotspJ; 

end 

%   findR2 

R2a=nonlin(w,c,u); 
R2b=nonlin(prw,prc,pru); 
R2=3/2.*R2a-l/2.*R2b; 
R2=(-1 *Re).*rsquare.*R2; 
Rtot=Rl+R2; 
prw=w ;prc=c ;pru=u; 

%% green function solution 

% find new wp 

%% apply BC for wp 

Rtot( 1 ,:)=zeros( 1 ,N);   % BC for wp=0 at r_inf 
Rtot(M+l,:)=zeros(l,N); % BC for wp=0 at r_l 

wp(:,N)=solsvd(Dll((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:), 
Dlu((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
Dlp((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
Rtot(:,N)); 

fori=N-l:-l:l 
sum=zeros(M+1,1); 
forj=i+l:N 

if rem(i+j,2)==2 
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sum=sum+(-2*(i-1 )).*wp(:,j); 
end 

sum(l)=0; 
sum(M+l)=0; 
end 
Rtot_=Rtot(:,i)-sum; 

wp(:,i)=solsvd(Dll((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
Dlu((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
Dlp((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
RtotJ; 

end 

% solve for new cp 

temp wp=-1. * rsquare. * wp; 
tempwp(M+l,:)=cbrl; % BC for cp=-c_r at r_l zero for pure spin 
tempwp(l,:)=zeros(l,N); % BC for cp=0 at r_inf 

cp(:,N)=solsvd(D31((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
D3u((N-l)*(M+l)+l:(N-l)*(M+l)+l+M,:),... 
D3p((N-1 )*(M+1)+1 :(N-1 )*(M+1)+1+M,:),... 
tempwp(:,N)); 

fori=N-l:-l:l 
sum=zeros(M+1,1); 
forj=i+l:N 

if rem(i+j,2)==2 
sum=sum+(-2*(i-l)).*cp(:,j); 

end 
sum( 1 )=0; 
sum(M+l)=0; 
end 
w_=tempwp(:,i)-sum; 

cp(:,i)=solsvd(D31((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
D3u((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
D3p((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:),... 
w_); 

end 

% find landa 
% find H 
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duml=phy(cp')'; 
dum2=(Ml*duml)'; % NxM+1 
dum3=-l.*c_r-dum2; 
dum4=[dum3;zeros(l,M+l);-l.*flipud(dum3(2:N,:))]; 
dum5=fft(dum4); 
dum6=imag(dum5( 1 :N,:)); 
dum6=dum6'; % M+lxN 

H=dum6(M+l,:);H=H'; % Nxl 
H(1)=0; 
landa=solsvd(Aiju,Aijs,Aijv,H); 

% find complete w & c 

dum 1 c=zeros(M+1 ,N) ;dum 1 w=dum 1 c; 
forjj=l:N 

blokc=ctil(:,(jj-l)*N+l :jj*N); 
blokw=wtil(:,(jj-l)*N+l :jj*N); 
dum2c=landa(jj).*blokc; 
dum2w=landa(jj).*blokw; 
dum 1 c=dum 1 c+dum2c; 
dum 1 w=dum 1 w+dum2w; 

end 

w=wp+dumlw; 
c=cp+dumlc; 

duml=(phy(u')+u_)'; 
dum2=M 1 *dum 1 -dum 1; 
dum3=dum2(M+l,:)'.*(sin(teta).A2); 
torq(ops)=-8*pi/Re*trapz(teta,dum3); 
if ops>l 
err(ops)=torq(ops)-torq(ops-1); 
end 

save tez4.mat u c w Re ops r_inf torq L N M dt; 

end % end of time loop 

function [Dl,D2,D3]=D_Bmat(M,N) 
global M3 R dt Re 
k=(M+l)*N; 
Dl=zeros(k,M+l); 
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D2=zeros(k,M+l); 
D3=zeros(k,M+l); 
fori=l:N 
forj=i:N 
ifi=j 

Dl((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:)... 
=M3+(-l*(i-l)*(i).*eye(M+l)-Re/dt.*R.A2); 

D2((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:)... 
=M3+(-l*(i-l)*(i).*eye(M+l)+Re/dt.*R.A2); 

D3((i-l)*(M+l)+l:(i-l)*(M+l)+l+M,:)... 
=M3+(-1 *(i-1 )*(i).*eye(M+1)); 

end 
end 

end 

function E=emat(M) 
E=zeros(M,M); 
m=0:M; 
z=cos(pi.*m./M); 
for i=0:M 

forj=0:M 
ifi~=j 

if ((i=o | i=M) & (j=0 I j=M)) I ((i~=0 & i~=M) & (j~=0 & j~=M)) 
c= 1 ;else 

if (i==0 I i==M) & (j~=0 & j~=M) 
c=2;else 

if (i~=0 & i~=M) & (j=0 I j=M) 
c= l/2;end;end;end; 
E(i+lj+l)=c*(-l)A(i+j)/(z(i+l)-z(j+D); 

else; 
if i=0 

E(i+l,j+l)=(2*MA2+l)/6; 
else 

if i=M 
E(i+l,j+l)=(2*MA2+l)/(-6); 

else 
E(i+1 ,j+1 )=-1 *z(j+1 )/(2*( 1 -z(j+1 )A2)); 

end 
end 

end 
end 

end 
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function R2=nonlin(w,c,u) 
global kmat rsquare cotteta N M M1 c_ c_teta c_r teta u_ u_r u_teta 
% variable list 
% 
% dw/dteta=non 1 dc/dteta=non2 dw/dr=non3 dc/dr=non4 (in phy) 
% du/dteta=non5 du/dr=non6 
% transpose matrixes for colomn operations in teta direction 
r=sqrt(rsquare)';w=w';c=c';u=u'; 
nonl=operat(w); 
non2=operat(c); 
non5=operat(u); 
wph=phy(w);cph=phy(c);uph=phy(u); 
non3=[Ml*wph']'; 
non4=[Ml*cph']';non4(:,M+l)=-0.5.*sin(teta); 
non6=[Ml*uph']'; 
terml=-l./r.*non3.*(non2+c_teta); 
term2=l ./r.*non 1 .*(non4+c_r); 
term3=-l.*cotteta./r.*wph.*(non4+c_r); 
term4=-l.*cotteta./r.*non3.*(c_+cph); 
term5=wph./rsquare'.*(non2+c_teta); 
term6=(c_+cph)./rsquare'.*non 1; 
term7= 1. *cotteta. * (non6+u_r). * (uph+u_). *2 ./r; 
term8=-l.*(non5+u_teta).*2.*(uph+u_) ./rsquare'; 
termO=term 1 +term2+term3+term4+term5+term6+term7+term8; 
ter=[termO;zeros( 1 ,M+1 );-l .*flipud(termO(2:N,:))]; 
RR2=fft(ter); 
R2=imag(RR2(l :N,:));R2=R2'; 

function R2sp=nonlinsp(u,c) 
global kmat rsquare cotteta N M M1 c_ c_teta c_r teta u_ u_r u_teta 
% variable list 
% 
% du/dteta=non 1 dc/dteta=non2 du/dr=non3 dc/dr=non4 (in phy) 
% transpose matrixes for column operations in teta direction 
r=sqrt(rsquare)' ;u=u' ;c=c'; 
nonl=operat(u); 
non2=operat(c); 
uph=phy(u);cph=phy(c); 
non3=[Ml*uph']'; 
non4=[Ml*cph']'; 
terml=-l./r.*(non3+u_r).*(non2+c_teta); 
term2= 1 Jr. * (non 1 +u_teta). * (non4+c_r); 
term3=cotteta./r.*(uph+u_).*(non4+c_r); 
term4=-l.*cotteta./r.*(non3+u_r).*(c_+cph); 

44 



term5=-1. * (uph+u_) ./rsquare'. * (non2+c_teta); 
term6=(c_+cph)./rsquare'.*(non 1 +u_teta); 
termO=term 1 +term2+term3+term4+term5+term6; 
ter=[termO;zeros(l,M+l);-l.*flipud(termO(2:N,:))]; 
RR2=fft(ter); 
R2=imag(RR2( 1 :N,:));R2sp=R2'; 

function y=operat(x) 
global N M kmat 
re=zeros(N,M+l); 
X=re+i.*x; 
Y=i.*kmat.*X; 
Y_ful=[Y;zeros(l,M+l);flipud(Y(2:N,:))]; 
y=ifft(Y_ful); 
y=real(y(l:N,:)); 

function y=phy(x) 
global N M 
re=zeros(size(x)); 
X=re+i.*x; 
Y_ful=[X;zeros( 1 ,M+1 );conj(flipud(X(2:N,:)))]; 
dum=ifft(Y_ful); 
y=real(dum(l:N,:)); 

function y=solsvd(u,s,v,b) 
w=diag(s); 
wmin=max(w)*le-12; 
for i=l:length(w) 

if w(i)<wmin;ww(i)=0;else;ww(i)= 1 /w(i);end 
end 
www=diag(ww); 
y=v*www*(u'*b); 

function y=solsvdl(u,s,v,b) 
w=diag(s); 
for i=l:length(w) 

ww(i)=l/w(i); 
end 
www=diag(ww); 
y=v*www*(u'*b); 
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